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CHOICE OF THE INTERMOLECULAR COLLISION FREQUENCY FOR MODEL 

KINETIC EQUATIONS IN THE THEORY OF MOTION OF A RAREFIED GAS 
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The effect of the intermolecular collision frequency on the nonisothermal motion 
of a rarefied gas is considered. 

i. The motion of a one-component rarefied gas in a channel has been theoretically 
treated using various methods based on the Boltzmann equation or models derivable from it. A 
fairly complete review of this approach can be found in [1-4]. The problem has been solved 
using the BGK equations [1-3], the ellipsoidal statistical model (EL model) of [5, 6], and 
the S model of [7, 8]. The advantage of third-order models, such as the EL and S models, 
compared to the BGK model is that in the approach to a continuous medium, the former give 
correct expressions for the stress tensor and heat-flux density [9]. 

The general form of the linearized kinetic equation for the third-order models is give~ 
in [i0]. In the solution of the equation, one muse choose the intermolecular collision 
frequency y. The choice for 7 is fairly arbitrary [9, 10], but at the same time it should 
be done such that the solution obtained from the model equation correspond to that of the 
Boltzmann equation. 

In [ii, 12] the effect of the choice for the intermolecular collision frequency on the 
solutions for Couette flow and the structure of shock waves was studied using a method based 
on the model equations proposed by Gross and Jackson [13]. 

In the present paper, we s~udy the heat and mass transport of a rarefied gas moving in 
a plane channel under temperature and pressure gradients using the third-order model kinetic 
equation [i0] for different values of the frequency y. We then study the effect of the 
value y on the solution over the whole range of Knudaen numbers. 

2. We consider motion of a monoatomic one-component rarefied gas in a channel formed 
by two infinite parallel plates (x = +d/2) and induced by pressure and temperature gradients 
along the channel, where the z axis is taken along the channel. We consider the state of 
the gas to be weakly perturbed and therefore the distribution function can be written in the 
form 

f(r, v~=fo(z, "~)[1 +h(x,v)], lib(x, "~)11<< I, (1) 

( ) ( ) fo(z, v ) :  n(z) m 3/2 my2 
2~ k T (z) exp 2kT(z) 

where n(z), T(z), and m are, respectively, the number density, temperature of the gas, and 
mass of the molecule. The function h(x,~) is the perturbation~ 

We write the third-order linearlzed model kinetic equation in the form [7, 10] 

Oh @2__ 5. v~--~-x +vz[,+z 2 )]=--?h+2yu~cz+4P=(?--v~3'+v~')cxcz+~qz(?--,(5~+,c6')(ca--~ )c~ 2) 

where the macroscopic quantities, in correspondence with their kinetic definitions, can be 
written in the form 
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Pxz = ~_819. C= Cz l _o,. ~ 
t 

I_ qz -I -- ) 2 c, 

;=P';' P =  ~kro ' " =  -~Tz'  

= -~z ' To = T ( z =  o). 

Explicit forms for ~(s), ~(4), ~(s), u(~) are given in [10]: 

8 ~(&)  _ _  ,V($) = _ _  _ _  /-/~';'~(22) 

5 

16 
,V<6) _ _  ~ ( 5 )  = _ _  n~"~(22). 

15 

(3) 

(4) 

Because of the linearity of the problem and the smallness of the perturbation h, one 
can wrlte 

h = h P v + h r x .  (5) 

Following [7], we transform the kinetic equation (2) into a systemof three linear In- 
tegral equations for the heat flux density qz, stress tensor Pxz, and macroscopicgas 
v e l o c i t y  u z 

, = A , +  B. 

Where the following notation is used in (6): 

j - -  

20 -- So) Jo sign (x-- s) J-t  

Jo sign (x - -  s) 2 (1 ~ So) J1 

"7 
t, l z  ' 

I 

"" Pxz I , =  2 - -  
I 

q, 

4 
5 

5 

, ] - 1  'V ~ 

Jo sign(x--s)v + 

71~;K 

I 
2 ]/'~-~1~ ds, 

- -  "~- So ) 2 

3 so J~--"~"Jo sign (x--s) 

1 j.~) 

(Ja - -  + J o )  sign ( x - -  s)'c 

v + ~ J3--J l+ J-t  ~ _ �9 

8n ~<22) 

D =  

(6) 

(7) 

8 = ~ d ~ ,  s o = - - =  ' '  ~ ' ' 

0 r 

The argument of  the  f u n c t i o n s  Jn ,  which have been s t u d i e d  in  d e t a i l  i n  [14],  i s  (61x- -  
s[). Information on these functions can be found in [15]. 

The system of equations (6) determine the local values of the macroscopic gas velocity, 
stress tensor, and heat flux density. With the help of (5), they divide into two sets of 
integral equationsj one of which describes the motion of the gas under a temperature gradient 
and the other under a pressure gradient. In practice we are interested in the number flux 
I N and heat flux Iq averaged over the channel cross section: 
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lq = 2Po +1/2 qz (x) dx = Lqq Xq + LqN X ~v, (8)  
f~ - 1 / 2  

+i/2 
IN = n~ Uz (X) dx = LNq Xq + LNN XN. 

---1/2 

Then the macroscopic fluxes corresponding to the thermodynamic forces are taken in the fol- 
lowing form [16-18] : 

Xq=----~ , XN=--k~. (9) 
To 

In (8) the off-diagonal coefficients satisfy the symmetry relation 

iqN = LNq. (i0) 

Equations (8) are next written in the convenient form 

noTo i y lq ----- P-'-OT~ lqqXq "q- T ' q N " N '  (11)  

1 v _ noTo. lNqX q .q_ ltO - ~ - - ~  l~NXN. 

From the equality of the coefficients (I0) it follows that 

lqN =ilNq" 
(i2) 

In (ii), Po and To are the pressure and temperature of the gas in the center of the channel 
(z  = o ) .  

Equations (6) were solved using the method of Galerkin [19] with the following approxi- 

mation for 4: 

r = �9 (13) 

N 

This form for ~ is correct in the continuum limit. 

After solving (6) it is convenient to transform to dimensionless quantities, related to 
the kinetic coefficients as follows [7, 18]: 

Gp = 2~k LNN = 21N~ v, O r -~- 26 LNq = - -  2tNq, 
no noT o (14)  

Qp - [~ Lq~r --- - -  1 lqlr ' Qr = ~ Lqq = I lqq. 
2noTo 2 2PoTo 

These q u a n t i t i e s  a r e  c o n v e n i e n t  t o  u s e  i n  c o m p a r i s o n s  w i t h  t h o s e  o f  o t h e r  a u t h o r s .  From t h e  
Onsager reciprocity relations for the off-diagonal coefficients (I0) it follows that 

G r = 4Qp. (15)  

In calculations for a specific caset the intermolecular collision frequency 7 must be 
chosen. We considered three forms for 7: 

= __.8 n9(2~). (16) 
5 

In this case we obtain from (2) the linearized S model equation of Shakhov [9, 20]. If we 
ignore the heat flux density qz on the right-hand side of (2), we obtain the well-known BGK 
model equation [21] 

16 nf~(22) (17) 
15 

Here we obtain the linearized EL model of Holway [22]. 
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TABLE I. Values of the Parameter so 

"~ go 

S model [9, 20] 
EL model [22, I0] 

1 
1.5 

0fl742 for the ha~d ~ph~re po~ntial 
[24] 

0.8613 for the (6-12)Lennard - Jone, po. 
tential for Ar at T = 300"K [25] 

0.8740 for the (6-12) Lennard -Ione~ po- 
tenttal for He, at T= 300*K [25] 

s( ~ n  ~ r 1 6 2  35 ~r f (18) 7 =  
15 4 ]" 

T h i s  fo rm f o r  7 was s u g g e s t e d  i n  [ i 0 ]  and-was  u s e d  i n  t h e  s t u d y  o f  t h e  m o t i o n  o f  a m i x t u r e  o f  
r a r e f i e d  g a s e s  [ 1 8 ] .  He re  f l (~r )  a r e  t h e  Chapman--Cowling i n t e g r a l s  [23] which  depend on t h e  
fo rm o f  t h e  m o l e c u l a r  i n t e r a c t i o n  p o t e n t i a l .  

In the solution of the system of integral equations (6)~ the quantity So, determined by 
(7)~ appears explicitly. Values of so used in the present paper are given in Table 1. The 
data on the fl(Lr) was taken from [23-25]. 

3. We now discuss the results for different values of y. In doing ~hls, it is con- 
venient to compare the fluxes (14) taken as functions of the product ~so, rather than as 
functions of the rarefaction parameter ~ alone. It can easily be shown that 6so is inversely 
proportional to the Knudsen number [6~ 21]. The dependence of the fluxes Gp, GT, Qp, and QT 
on ~so are shown in Table 2. 

It follows from comparison of the results in Tables 1 and 2 that (15) is correct for 
different values of so. Consequently, for any choice of 6, the Onsager reciprocity relations 
are satisfied for all Knudsen numbers. Also the Gp are identlcal to within less than 1~ as 
a function of so if 6so > 10. Gp increases with increasing so for all 6so. G T values are 
identical for different values of so (to less than i~) if 6so>/50. However if 6so < 0.5, 
G T increases with increasing so and if 6so > 0.5, it decreases with increasing so. A similar 
dependence is observed for Qp, as suggested by (15)D and also for QT. Thus for 6So < i, QT 
increases with increasing so, and for 6so > 1 it decreases with increasing So. 

From the values of Gp and QT in the viscous case (~so § =), the viscosity ~ and thermal 
conductivity X can be calculated as follows: 

n _ ~ I  (SSo)~o 1 (19) 
= 12 l~N(6So-+ c~) ' 

i ~ = 2 (~SO) go~Jqq (~S0"-~ OO), ( 2 0 )  

~o =0.266949"10-s  ] / ~ - ~  1 , ~o 1 (21) ~z ~22>, 8314"36 M 

Where M is the maw a gas molecule in a.e.~ o is the scattering cross section of the mole- 
cule in ~ and ~(br), are the reduced ~ integrals [23-25]. 

The fact that the fluxes Gp(Q T) are constant with respect to so for large 6so shows that 
n and A do not depend on the intermolecular colllelon frequency 7. 

In Table 3 we show the results for the viscosities of the inert gases using (19) for 
the (6-12) Lennard--Jones potential as compared to values obtained in the first Chapman-- 
Enskog approximation [25]~ as well as to values obtained by experiment [26] and to values 
recommended in [27]. The results for the thermal conductivity of the inert gases according 
to (20) and the (6-12) Lennard--Jones potential are compared to those obtaiDed in the first 
approximation in the Chapman--Enskog method [25],and to the handbook values recommended in 
[27, 28] and given for comparison in Table 4. 

Comparison of the values of the transport coefficients given in Tables 3 and 4 shows 
that our approach for calculating the kinetic coefficients for the Viscous flow of a gas is 
correct. 
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TABLE 2. F l u x e s  Gp, GT, QP3 QT a s  f u n c t i o n s  o f  8So 

0,7742 

$0 

6p 

1,5 

0,01 
0,05 
0,1 
0,5 

1 
5 
10 
50 

5~  
1000 

2,925 
2,206 
1,951 
1,564 
1,518 
1,984 
2,760 
9,360 

1,768.10 t 
8,434 

1,677.10: 

2,978 
2,242 
1,987 
1,584 
1,532 
1,991 
2,765 
9,362 

1,769.101 
8,434 

1. 677.10"- 

2,985 
2,249 
1,992 
1,587 
1,534 
1,992 
2,765 
9,362 

1,769. 101 
8,434 

1,677. lO 3 

6r  

3,052 
2,306 
2,040 
1,614 
1,553 
2,001 
2,772 
9,364 

1,769. lO t 
8,434 

1,677.10 "~ 

3,257 
2,479 
2,193 
1,706 
1,620 
2,031 
2,800 
9,372 

!,769.101 
8,434 

1,677.10 e 

0,01 
0,05 
0,1 
0,5 

I 
5 
10 
50 
100 
500 
1000 

1,189 
8,350.10-~ 

7,052 
4,634 
3,732 
! ,658 

9,679. !0- :  
2,185 
l, 109 

2,243.10 -3 
1,123 

1,213 
8,475. I0-1 

7,162 
4,624 
3,689 
1,636 

9,613.10-2 
2,182 
I, 108 

2,243.10-~ 
1,123 

1,216 
8,503.10-1 

7,178 
4,623 
3,683 
1,633 

9,603.10 -e 
2,182 
1,108 

2,243.10 -3 
1,123 

Qp 

1,247 
8,720.10- t 

7,325 
4,619 
3,636 
1,603 

9,508- I0-0- 
2,179 
1,108 

2,243. I0 -3 
1,123 

1.341 
9,386- I0-1 

7,820 
4,659 
3,537 
1,508 

9,I45.10-2 
2,165 
1,104 

2,241.10"'a 
I, 123 

0,01 
0 , ~  
0,1 
0,5 

1 
5 
10 
50 

5~  
I000 

0,2974 
0,2087 
0,1763 
0,1158 

0,9332.10-I 
0,4144 
0,2419 

0 5462.10 -~ 
0,2771 

0,5508.10-3 
0,2809 

0,3034 
0,2119 
0,1791 
0,1156 

0,9221.10-I 
0,4089 
0,2404 

0,5456.10-2 
0,2769 

0,5608.10-3 
0,2809 

0,3041 
0,2126 
0,1795 
0,1156 

0,9208.10 - I  
0,4082 
0,2400 

0,5454.10-2 
0,2769 

0,5608.10-s 
0,2809 

Qr 

0,3116 
0,2181 
0,1831 
0,1155 

0,9088.10 -1 
0,4007 
0,2378 

0,5447.10-3 
0,2768 

0,5606-10-8 
O,28O9 

0,3353 
0,2346 
O, 1956 
0,1165 

0,8843.10 -1 
0,3771 
0,2286 

0,5413-10-~ 
O, 2760 

0,5604. IO-a 
0,2807 

0,01 
0,05 
0,1 

.0,5 
1 
5 
10 
50 
100 
500 
1000 

1,614 
1,156 

0,9724 
0,5852 
0,4341 
0,1537 

0,8479.10-~ 
0,1838 

0,9281.10-2 
0,t871 

0,9366.10-3 

1,643 
1,177 

0,9893 
0,5899 
0,4352 
0,1535 

0,8475.10-z 
0,1837 

0,9281-I0-~ 
0,1871 

0,9366.10 -3 

1,647 
1,180 

0,9915 
0,5906 
0,4354 
0,1534 

0,8473-10-1 
0,1837 

0,9281.I0-3 
0,1871 

0,9366.10-3 

1,684 
1,208 
1,013 

0,5972 
0,4373 
0,1532 

0,8468.10 -1 
0,1837 

0,9281.10 -~ 
0,1871 

0,9366.10 -3 

1,796 
1,294 
1,083 

0,6201 
0,4453 
0,1525 

0,8447.10 -1 
0,1837 

0,9279.10 -3 
0,1871 

0,9366.10-3 

TABLE 3. 
T = 300~ P = 1.013-105 Pa 

Literature source He 

Eq. (19) 1986 
Chapman - Enskog meth, [25] 1998 
[26] 1972 
,[27] 

Dynamic Viscosity for the Inert Gases, ~.i0 s Pa-sec, 

Ne 

3173 
3192 
3203 
3175 

Ar 

2266 
2282 
2272 
2275 

Kr 

2578 
2594 
2530 
2554 

Xe 

2354 
2369 
2308 
2350 

When 6so is largej the following asymptotic formulas for Gp and G T are valid: 

6so 
Gv = - - - F +  %, 

w h e r e  1 2 
% = T +  - - ,  

(22) 

(23) 
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TABLE 4. 
W(m-deg), T = 300~ P = 1.013.10 s Pa 

Eq. (20) 15544 4926 
Chapman - Enskog meth. [25] 15560 4931 
[28] 15200 4900 
[27] -- 4908 

Thermal Conductivities of the Inert Gases, I,i0 s 

Ar 

1780 
1782 
1770 
1777 

B Kr / Xe 

964 [ 562 
964 563 
958 569 
951 558 

- - /  

~3 

0,/: 
0,2 ":" 

i ~. a I 
U 
-z - /  o / Ig(gso) -2 -/ o 

b 

! tg(iso) 

Fig. i. Indices for the TPD effect (a) and thermoef- 
fect (b) as a function of log (6So): Curve i) so - 1.5 
(EL model); curve 2) so = 0.7742; curve 3) so = 1 (S 
model). 

Gr = A r  A r  = 9 ~ .  

6S o 8 (24) 

Here op is the Poiseuille slip constant [i] and A T is the thermal slip constant [2]. Equa- 
tion (22) agrees completely with earlier results using the BGK and EL models [i] and the S 
model [29, 30] for diffusive scattering of gas molecules at the walls of the channel, We 

note that in the numerical results for op in [31] there is an error; in place of V'~x ..... Op= 

2 
1.0073 the value 1.0161 is given. 

The thermal slip constant A T is obtained as in the S model [8, 30], but differs from 
the value A T = 0.75 obtained in the BGK model [32, 33]. This is due to the inability of the 
BGK model to describe both heat and mass transport in a gas slmultaneously [9], 

We consider first-order cross-over effects in a rarefied gas: the thermomolecular 
pressure difference effect (TPD) and the thermoeffect due to a pressure gradient. According 
to a theorem of Prigogine on stationary states of order k [16], the following condition is 
satisfied for the TPD effect: 

(25) 

For thermoeffect, the analogous condition is 

Iq = O. ( 2 6 )  

On the o the r  hand, the TPD effect is described by the relations [3, 8, 34] 

Gr el =( T, w= (27) 
P, \ T, ] ' 0s 

where 7T is usually called the TPD effect:index. 

The dependence of YT on ~So for different values of so is shown in Fig. la. The maximum 
dispersion is observed for ~se ~ 1 and is about 13%. For the thermoeffect, the analogous 
formula to (27) is 

T2 Q r '  (28) 
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where ~ is the thermoeffect index. In Fig. ib, the dependence of ~ on 6so is shown for 
dlfferent values of so. The maximum dispersion is observed for ~so ~ 5 and is about 9%. 

In the free molecule case (6so + 0) 7T = 0.5 and ~ = 2/9. In the viscous flow regime 
(~So + ~) YT § 0 and ~ = 0.3 and is independent of so. 

NOTATION 

d, distance ~etween the plates; fo, Maxwell distribution function; v~ velocity of gas 
molecules; k, Boltzmann constant; 9, logarithmic pressure gradient; r, logarithmic tempera- 
ture gradient; 6, rarefaction parameter; Gp, Poiseuille flow; G T thermal creep flow; QT, QP, 
heat fluxes under temperature and pressure gradients, respectively. 
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STRESSES,VISCOSITY, AND SCALES IN MOLAR TRANSFER 

V. F. Potemkin UDC 532.526 

The article presents unified relations describing the profiles of molar stresses 
and viscosity. 

For the calculation of heac and mass transfer in engineering devices iC is indispensa- 
ble to know the distribution of molar stresses and viscosity in the turbulent boundary layer. 
However, to this day there is no unified relations describing the molar stress and viscosity 
profiles for complex flow conditions, e.g., in case of a rough surface, the entrance section 
of a channel, etc. [I]. 

It is known [i] that in the turbulent core of a two-dimensional steady turbulent bound- 
ary layer the terms of the stress tensor satisfy the inequality 

(1) 

For flow in the boundary layer on a plate, taking (i) into account, we represent uS a 
in the form 

~+ = U$2 -- ~. (2) 
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